Molecular relationships between Papaver somniferum \mathbf{L}. and P. setigerum DC. (Papaveraceae)

Olga De Castro ${ }^{1}$, Paolo Casoria ${ }^{2}$
${ }^{1}$ Dipartimento di Biologia vegetale, ${ }^{2}$ Orto Botanico, Università degli Studi di Napoli Federico II, Via Foria, 223 I-80139 Napoli, Italy

Abstract

Riassunto. Relazioni molecolari tra Papaver somniferum L. e P. setigerum DC. (Papaveraceae).

È stato condotto uno studio sulla variabilità molecolare di Papaver somniferum L. e P. setigerum DC. Le sequenze degli Spaziatori Interni Trascritti del DNA ribosomale nucleare (ITS 1 and 2) sono risultati molto simili nelle due entità. Ad ogni modo, mentre i ceppi coltivati di P. somniferum sono quasi del tutto omogenei, i campioni selvatici di P. somniferum e P. setigerum presentano una sequenza maggiormente variabile. Un'analisi fenetica ha mostrato che gli esemplari di P. setigerum sono chiaramente separati, in termini di sequenza, da P. somniferum. I campioni selvatici di P. somniferum impiegati nello studio, benché molto più simili in termini di sequenza ai ceppi coltivati dello stesso taxon, si raggruppano alla base del gruppo di P. setigerum. L'osservazione dei siti paraloghi presenti nelle sequenze ha confermato sotto il profilo molecolare che le due entità ibridano e che le tracce di ibridazione sono più frequenti nelle località in cui i due taxa sono simpatrici.

Key words ITS, Molecular variation, Papaver somniferum, P. setigerum

Introduction

The genus Papaver, which includes 70 species (Kadereit, 1986), has a range centered in South Western Asia, with some widespread species in North America and South Africa.

Among the eleven sections of the genus, sect. Papaver (Kadereit, 1986) includes P. somniferum L., containing alkaloids of the morphinane group and therefore widely cultivated for opium extraction. In the same section, P. setigerum DC. is present, which, although often ascribed to a circumscription substantially coincident with that of P. somni-
ferum (Fedde, 1909; Mowat \& Walters, 1964), has been equally often regarded as a distinct species (e.g., Bertoloni, 1842; Gussone, 1854; Pignatti, 1982; Greuter et al., 1989). On the contrary, the various taxa in which P. somniferum has been subdivided in the past (e.g., P. album Miller, P. hortense Hussenot, P. officinale Gmelin, P. somniferum subsp. nigrum (DC.) Thell.) have been recently synonimized (Greuter et al., 1989). Previous literature (La Valva et al., 1985) indicated that morphology and alkaloid chemistry of P. setigerum is different from those of P. somniferum. This study revealed that morphine codeine and thebaine, the major alkaloids of P. somniferum are absent in P. setigerum.

However, P. setigerum and the wild ecotypes of P. somniferum (formerly known as P. somniferum var. nigrum) show a similar habit, and frequently populations of P. somniferum are classified as P. setigerum and vice versa. Until now, no attempt to explore the range of molecular variation of the taxa, as well as its possible overlapping, has been carried out. This paper deals with a molecular investigation of P. setigerum and P. somniferum, aiming at understanding the relationships between the two taxa.

Materials and methods

The plants of P. somniferum, labeled "PALB", were grown from seeds at the Botanical Garden of Naples (Italy) and belonged to the "album" variety of P. somniferum; the plant labeled PCOS was collected in nature and belonged to the variety "nigrum". The plants of P. setigerum were collected in the wild. All the other accessions were grown from seed and used for extraction at the stage of seedlings (Tab. 1).

DNA was extracted from dried $(0.05-1 \mathrm{~g})$ or fresh $(0.1-1 \mathrm{~g})$ leaves. Extraction was carried out by using the protocol by Caputo et al. (1991) opportunely scaled and modified.

Table 1 - Acronyms and origins of the sampled specimens

PALB	P. somniferum "album"	Historically cultivated at the Botanical Garden of Naples
PCOS	P. somniferum "nigrum"	Neighborhood of Cosenza, Italy
PSET	P. setigerum	Posillipo, Naples, Italy
PVEN	P. setigerum	Ventotene, Pontian Islands, Italy
PVUL	P. setigerum	Vulcano, Aeolian Islands, Italy
P03	P. somniferum	Grown from seed at the Botanical Garden of Naples
P09	P. somniferum	Grown from seed at the Botanical Garden of Naples
P10	P. somniferum	Grown from seed at the Botanical Garden of Naples
P14	P. somniferum	Grown from seed at the Botanical Garden of Naples
P17C	P. somniferum	Grown from seed at the Botanical Garden of Naples
P22	P. somniferum	Grown from seed at the Botanical Garden of Naples

ITS 1 and 2 were amplified by using primers and reaction conditions as reported in AcETO et al. (1999)

PCR fragments were then purified by using Microcon 100 microconcentrators (Amicon) and double-strand sequenced in both directions by using a modification of the dideoxy method as implemented in a double strand DNA cycle sequencing system with fluorescent dyes. Sequence reactions were then loaded into a 373A Applied Biosystems Automated DNA sequencer (Applied Biosystems). Various sequencing experiments were repeated to solve all uncertainties.

The alignment was accomplished by using Clustal W ver. 1.6 (Thompson et al., 1994) with default settings. Sequences were then reduced to only ITS1 and ITS2 by aligning them with the 3 ' termini of 18 S and 5.8 S and with the 5 ' termini of 5.8 S and 26 S of various sequences available in the literature. Clustal W was also used to produce the distance matrix, as well as the dendrogram of relationships.

RESULTS AND DISCUSSION

ITS1 length was 249 bp for all the investigated plants, and ITS2 length was 255 bp , except for the specimen from Ventotene, whose ITS2 is 254 bp long. ITS distances within P. somniferum/P. setigerum (Tab. 2) range from complete identity (between PALB, P14, PCOS,

P17C, P09) to 0.058 (between P22 and PVEN). The cultivated strains of P. somniferum are much more similar to each other than the three wild specimens of P. setigerum of different geographic origin.

Tab. 2 - Pairwise distances between the taxa and specimens employed in the present study

PALB	0.000	0.002	0.002	0.000	0.006	0.002	0.002	0.000	0.014	0.052	0.045
P10	0.002	0.000	0.006	0.002	0.012	0.008	0.008	0.006	0.020	0.056	0.049
P03	0.002	0.006	0.000	0.004	0.008	0.002	0.002	0.002	0.016	0.056	0.045
P14	0.000	0.002	0.004	0.000	0.008	0.002	0.002	0.002	0.016	0.052	0.043
P22	0.006	0.012	0.008	0.008	0.000	0.008	0.008	0.006	0.018	0.058	0.049
P09	0.002	0.008	0.002	0.002	0.008	0.000	0.000	0.000	0.014	0.054	0.043
P17C	0.002	0.008	0.002	0.002	0.008	0.000	0.000	0.000	0.014	0.055	0.043
PCOS	0.000	0.006	0.002	0.002	0.006	0.000	0.000	0.000	0.010	0.051	0.040
PSET	0.014	0.020	0.016	0.016	0.018	0.014	0.014	0.010	0.000	0.030	0.019
PVEN	0.052	0.056	0.056	0.052	0.058	0.054	0.055	0.051	0.030	0.000	0.008
PVUL	0.045	0.049	0.045	0.043	0.049	0.043	0.043	0.040	0.019	0.008	0.000

Fig. 1 - Dendrogram of the relationships among the taxa in study

The dendrogram of relationships (Fig. 1), in fact, shows that the various cultivated strains investigated are very similar to one another in terms of sequence. The three specimens which were investigated for P. setigerum were on the contrary clearly separate and make a distinct group. The wild P. somniferum (PCOS), although much closer in terms of sequence to the cultivated strains, groups at the base of the P. setigerum cluster.

The results obtained would indicate that P. somniferum and P. setigerum are two not very coherent groups on a biomolecular standpoint; leakage of one genome towards the other is quite abundant. The very close similarity among the cultivated strains (the maximum distance between which is 0.012) may be easily related to recent artificial selection starting from a pool of similar genotypes, whereas the relative distinctness of the wild P. somniferum may be related to independent evolution for the past few hundred or thousands years, after domestication of the wild plants. Interestingly enough, the two accessions of P. setigerum from Vulcano (Aeolian islands) and Ventotene (Pontian islands) are closer to each other than either is to the mainland accession from Naples (PSET). The latter, on the contrary, is closer, in terms of distance, to the wild specimen of P. somniferum.

Almost all sequences have several heterozygous positions (Tab. 3). The majority of these occur in the wild specimens of P. setigerum and P. somniferum, rather than in the cultivated ones; such result would only suggest that artificially propagated lines have been kept pure. For each specimen, several of these paralogous positions do not have additive counterparts in the other investigated plants, and this would indicate that not the entire range of molecular variation has been sampled. However, the positions which do have correspondence in other specimens are more frequent in the P. setigerum specimens from Naples and from Vulcano (seven such positions in the ITS's of PSET and PVUL) than in the P. somniferum specimen from Cosenza and in the P. setigerum specimen from Ventotene (two such positions in the ITS's of PCOS and PVEN).

Tab. 3 - Alignment of the sequences in study. An asterisk indicates identity. A dash indicates interspecific paralogies. Six unknown nucleotides "N's" have been placed downstream ITS1 with the purpose of separating ITS1 from ITS2

Abstract

PALB TCGAAACCTGCCCAGCAGAACGACCCGCGAACACGTGAATCCAAGTCCAGTGGTGGTGCA - 60 P 10 TCGAAACCTGCCCAGCAGAACGACCCGCGAACACGTGAATCCAAGTCCAGTGGTGGTGCA - 60 P03 KTGAAACCTGCCCAGCAGAACGACCCGYGAACACRTGAATCCAAGTCCAGTGGTGGTGCA - 60 P14 TCGAAACCTGCCCAGCAGAACGACCCGYGAACACGTGAATCCAAGTCCAGTGGTGGTGCA - 60 P22 TCGAATCCTGCCCAGCAGAACGACCCGCGAACACGTGAATCCAAGTCCAGTGGTGGTGCA - 60 P09 TCGAAACCTGCCCAGCAGAACGACCCGTGAACACGTGAATCCAAGTCCAGTGGTGGTGCA - 60 P17C TCGAAACCTGCCCAGCAGAACGACCCGTGAACACGTGAATCCAAGTCCAGTGGTGGTGCA - 60 PCOS TCGAAASSTGCCCAGCASAACGACCCGYGAACAMGTGAATCCAAGTCCAGTGGTGGTGCA - 60 PSET TCGAAACCTGCCCAGCAGAACGACCCGYGAACACGTGAATCCAACTCCAATGGTGATGCA - 60 PVEN TCGAAACCTGCCCAGCAGAACGACCCGYGAACACGTGAATCCAACTCCAATGGTGATGCA - 60 PVUL TCGAAACCTGCCCAGCAGAACGACCCGTGAACACGTGAATCCAACWCSAATGGCGATGCA - 60

PALB AGTGGGGAGAGATCCCCCTTGCTCCACCGCTCGGTCGGGGAGTTGGCTAACACCCTCTCT - 120 P10 AGTGGGGAGAGATCCCCCTTGCTCCACCGCTCGGTCGGGGAGTTGGCTAACACCCTCTCT - 120 P03 AGTGGGGAGAGATCCCCCTTGCTCCACCGCTCGGTCGGGGAGTTGGCTAACACCCTCTCT - 120
P14 AGTGGGGAGAGATCCCCCTTGCTCCACCGCTCGGTCGGGGAGTTGGCTAACACCCTCTCT - 120
P22 AGTGGGGAGAGATCCCCCTTGCTCCACCGCTCGGTCGGGGAGTTGGCTAACACCCTCTCT - 120
P09 AGTGGGGAGAGATCCCCCTTGCTCCACCGCTCGGTCGGGGAGTTGGCTAACACCCTCTCT - 120
P17C AGTGGGGAGAGATCCCCCTTGCTCCACCGCTCGGTCGGGGAGTTGGCTAACACCCTCTYT - 120
PCOS AGTGGGGAGAGATCCCCCYTGCTCCACCGCTCGGTCGGGGAGKKGGSTAACACCCTCTCT - 120
PSET AGTGGGGAGAGATCCCCCTTGCTCCACCGCTCGGTCGGGGAGTCGGTTAACACCCTCTCT - 120 PVEN AGTGGGGAGAGATCCCCCTTGCTCCACCGCTCGGTCGGGGAGTCGGTTAACACCCTCTCT - 120 PVUL AGTGGGGAGAGATCCCCCTTGCTCCRCCGCTCGGTCGGGGAGTCGGTTAACRCCCTCTCT - 120

```
****************** ****** **************** - ************* - 120
```

PALB TTGTGCCGGAAAACGAACCCAAGGCGCGGTGAGCGCCAAGGAAAAAACAAATGGATGCTA-180 P10 TTGTGCCGGAAAACGAACCCAAGGCGCGGTGAGCGCCAAGGAAAAAACAAATGGATGCTA-180 P03 TTGTGCCGGAAAACGAACCCAAGGCGCGGTGAGCGCCAAGGAAAAAACAAATGGATGCTA-180 P 14 TTGTGCCGGAAAACGAACCCAAGGCGCGGTGAGCGCCAAGGAAAAAACAAATGGATGCTA-180 , P22 TTGTGCCGGAAAACGAACCCAGGGCGCGGTGAGCGCCAAGGAAAAAACAAATGGATGCTA-180 P09 TTGTGCCGGAAAACGAACCCAAGGCGCGGTGAGCGCCAAGGAAAAAACAAATGGATGCTA-180 P17C TTGTGCCGGAAAACRAACCCAAGGCGCGGTGAGCGCCAAGGAAAAAACAAATGGATGCTA-180 PCOS TTGTGCCGGAAAACRAACCCAAGGCGCGGTGAGCGCCAAGGAAAAAACAAATGGATGCTA-180 PSET YYGTGCCGGAAAACGAACCCAAGGCGCGGTGAGCGCCAAGGAAAAAACAAATGGATRCTA - 180 PVEN CCGTGCCGAAAAACGAACCCAAGGCGCGGTAAGCGCCAAGGAAAAAACAAATGGATRCYA - 180 PVUL CCGTGCCGRAAAACGAACCCAAGGCGCGGTAAGCGCCAAGGAAAAAACAAATGGATACYA - 180

PALB GCGGGCCTCTTCTCTTTCTCCTGCCTCGGTGGGAAAAATGCAGCGGTAGGTGTCGCGAAA - 240 P10 GCGGGCCTCTTCTCTTTCTCCTGCCTCGGTGGGAAAAATGCAGCGGTAGGTGTCGCGAAA - 240 P03 GCGGGCCTCTTCTCTTTCTCCTGCCTCGGTGGGAAAAATGCAGCGGTAGGTGTCGCGAAA - 240 P14 GCGGGCCTCTTCTCTTTCTCCTGCCTCGGTGGGAAAAATGCAGCGGTAGGTGTCGCGAAA - 240 P22 GCGCGCCTCTTCTCTTTCTCCTGCCTCGGTGGGAAAAATGCAGCGGTAGGTGTCGCGAAA - 240
P09 GCGGGCCTCTTCTCTTTCTCCTGCCTCGGTGGGAAAAATGCAGCGGTAGGTGTCGCGAAA - 240 P17C GCGGGCCTCTTCTCTTTCTCCTGCCTCGGKGGGAAAAATGCAGCGGTAGGTGTCGCGAAA - 240 PCOS GCGGGCCTCTTCTCTTTCTCCTGCCTCGGTGGGAAAAATGCAGCGGTAGGTGTCGCGAAA - 240 PSET GCGTGCCTCTTCTCTTTYTCCTGCCTCGGTGGGARAAATGCAGCGGTAGGTGTCGCGAAA - 240 PVEN GCGTGCCTCTTCTCTTTCTCCTGCCTCGGTGGGAGAAATGCAGCGGTAGGTGTCGCGAAA - 240 PVUL GCGTGCCTCTTCTCTTTTTCCTGCCTCGGTGGGAGAAATGCAGCGGTAGGTGTCGCGAAA - 240

PALB TCCTATCTTNNNNNNACCGAGTCTCCCCCTCCAACTCATGTCCTTGGCGCCTTCTGGCGA - 300 P10 TCCTATCTTNNNNNNCCCGAGTCTCCCCCTCCAACTCATGTCCTTGGCGCCTTCTGGCGA - 300 P03 TCCTATCTTNNNNNNACCGAGTCTCCCCCTCCAACTCATGTCCTTGGCGCCTTCTGGCGA - 300 P14 TCCTATCTTNNNNNNACCGAGTCTCCCCCTCCAACTCATGTCCTTGGCGCCTTCTGGCGA - 300 P22 TCCTATCTTNNNNNNACCGAGTCTCCCCCTCCAACTCATGTCCTTGGCGCCTTCTGGCGA - 300 P09 TCCTATCTTNNNNNNACCGAGTCTCCCCCTCCAACTCATGTCCTTGGCGCCTTCTGGCGA - 300 P17C TCCTATYTTNNNNNNACCGAGTCTCCCCCTCCAACTCATGTCCTTGGCGCCTTCTGGCGA - 300 PCOS TCCTATCTTNNNNNNACCGAGTCTCCCCCTCCAACTCATGTCCTTGGCGCCTTCTGGCGA - 300 PSET TCCAATCTTNNNNNNACCGAGTCTCCCCCTCCAACTCATGTCCTTGGCGCCTTCTGGCGA - 300 PVEN TCCAATCTTNNNNNNACCGATTCTCCCCCTCCAACTCATGTCCTTGGCGCCTTC-GGCGA - 299 PVUL TCCRATCTTNNNNNNACCGATTCTCCCCCTCCAACTCATKTCCTTGGCGCCTTYTGGCGA - 300
$* * *-* * \quad * * * * * * * * \quad * \quad * * * * *$
PALB CATTGGCAYTGGGCAGTGAATGKGGAGGACATTGACCCCCCGTGCCTTTAAAGTGCGGTC - 360 P10 CATTGGCACTGGGCAGTGAATGTGGAGGACATTGACCCCCCGTGCCTTTAAAGTGCGGTC - 360 P03 CATTGGCATTGGGCAGTGAATGKGGAGGACATTGACCCCCCGTGCCTTTAAAGTGCGGTC - 360 P14 CATTGGCACTGGGCAGTGAATGKGGAGGACATTGACCCCCCGTGCCTTTAAAGTGCGGTC - 360 P2 2 CATTGGCATTGGGCAGTGAATGGGGAGGACATTGACCCCCCGTGCCTTTAAAGTGCGGTC - 360 P09 CATTGGCATTGGGCAGTGAATGGGGAGGACATTGACCCCCCGTGCCTTTAAAGTGCGGTC - 360 P17C CATTGGCATTGGGCAGTGAATGGGGAGGACATTGACCCCCCGTGCCTTTAAAGTGCGGTC - 360 PCOS CATTGGCATTGGGCAGTGAATGGGGAGGACATTGACCCCCCGTGCCTTTAAAGTGCGGTC - 360 PSET CATTGGCATTGGGCAGTGAATGGGGAGGAYATTGACCCCCCGTGCCTTKAAAGTGCGGTC - 360 PVEN CATCGGCACTGGGCAGTGAACGGGGAGGATATTGACCCCCCGTGCCTTGAAAGTGCGGTC - 360 PVUL CATYGGCAYTGGGCAGTGAAYGGGGAGGATATTGACCCCCCGTGCCTTKAAAGTGCGGTC - 359

```
******* *********** *******-******************-***********-360
```

PALB GGTCTAAACACAGGCCCTGGGAGGCCGGCGTCACGATTCGTGGTGGTCGACACTCGTTGT - 420 P10 GGTCTAAACACAGGCCCTGGGAGGCCGGCGTCACGATTCGTGGTGGTCGACACTCGTTGT - 420 P03 GGTCTAAACACAGGCCCTGGGAGGCCGGCGTCACGATTCGTGGTGGTCGACACTCGTTGT - 420 P14 GGTCTAAACACAGGCCCTGGGAGGCCGGCGTCACGATTCGTGGTGGTCGACACTCGTTGT - 420 P22 GGTCTAAACACAGGCCCTGGGAGGCCGGCGTCACGATTCGTGGTGGTCGACACTCGTTGT - 420 P09 GGTCTAAACACAGGCCCTGGGAGGCCGGCGTCACGATTCGTGGTGGTCGACACTCGTTGT - 420 P 17 C GGTCTAAACACAGGCCCTGGGAGGCCGGCGTCACGATTCGTGGTGGTCGACACTCGTTGT - 420 PCOS GGTCTAAACACAGGCCCTGGGAGGCCGGCGTCACGATTCGTGGTGGTCGACACTCGTTGT - 420 PSET GGTCTAAACACAGGCCCTGGGAGGCCGGCGTCACGATTCGTGGTGGTCGACACTCGTTGT - 420 PVEN GGTCTAAACACAGGTCCTGGGAGGCCAGCGTCACGATTCGTGGTGGTCGACACTCGTTGT - 420 PVUL GGTCTAAACACAGGTCCTGGGAGGCCGGCGTCACGATTCGTGGTGGTCGACACTCGTTGT - 419
$* * * * * * * * * * * * * * \quad * * * * * * * * * * * \quad *-420$

PALB CTCTCTTCATTCCTGAATCCGTGTCTGCTGTGCTTACCGTGAAGGACCATAAGGAACCCA -480 P10 CTCTCTTCATTCCTGAATCCGTGTCTGCTGTGCTTACCGTGAAGGACCATAAGGAACCCA - 480 P03 CTCTCTTCATTCCTGAATCCGTGTCTGCTGTGCTTACCGTGAAGGACCATAAGGAACCCA -480
P14 CTCTCTTCATTCCTGAATCCGTGTCTGCTGTGCTTACCGTGAAGGACCATAAGGAACCCA - 480
P22 CTCTCTTCATTCCTGAATCCGTGTCTGCTGTGCTTACCGTGAAGGACCATAAGGAACCCA - 480
P09 CTCTCTTCATTCCTGAATCCGTGTCTGCTGTGCTTACCGTGAAGGACCATAAGGAACCCA -480
P17C CTCTCTTCATTCCTGAATCCGTGTCTGCTGTGCTTACCGTGAAGGACCATAAGGAACCCA -480
PCOS CTCTCTTCATTCCTGAATCCGTGTCTGCTGTGCTTACCGTGAAGGACCATAAGGAACCCA -480
PSET CTCTCTTCATTCCTGAATCCGTGTCTGCTGTGCTTACCGTGAAGGACCATAAGGAACCCA -480
PVEN CTCTCTTCATTCCTGAATTCGTGYCGGCTGTGCTTGCCGTGAAGGACCATGAGCAACCCA -479
PVUL CTCTCTTCATTCCTGAATTCGTGTCGGCTGTGCTTACCGTGAAGGACCATRAGCAACCCA -480

PALB TCGGGCCATAAATATGGCACCCACTCTGCG -510
P10 TCGGGCCATAAATATGGCACCCACTCTGCG -510
P03 TCGGGCCATAAATATGGCACCCACTCTGCG -510
P14 TCGGGCCATAAATATGGCACCCACTCTGCG -510
P22 TCGGGCCATAAATATGGCACCCACTCTGCG -510
P09 TCGGGCCATAAATATGGCACCCACTCTGCG -510
P17C TCGGGCCATAAATATGGCACCCACTCTGCG -510
PCOS TCGGGCCATAAATATGGCACCCACTCTGCG -510
PSET TCGGGCCATAAATATGGCACCCACTCTGCG -510
PVEN TCGGTCCATAAATATGGTACCCACTCTGCG -509
PVUL TCGGTCCATAAATATGGTACCCACTCTGCG -510
$* *$
By selecting only those positions for which nucleotides differ between P. somniferum and P. setigerum, the number of observed paralogies is lower. These positions (indicated with a dash in the alignment of Tab. 3) are seven in PSET, two in PCOS and PVEN and one in PVUL. As a consequence, it is possible to conclude that P. somniferum and P. setigerum can be distinguished in terms of sequence; however, the presence of shared paralogies indicates that they hybridize easily (this information is very well known from literature), and that hybridizations occurs more frequently when the two taxa grow sympatrically. In fact, the greater isolation of the insular specimens of P. setigerum, as well as the low number of paralogies shared with P. somniferum, may depend on the fact that in neither island P. somniferum is reported (Ferro \& Furnari, 1968; Anzalone \& Caputo, 1974-75). This species, on the contrary, grows in mainland Italy and the mainland Italian specimen of P. setigerum shows traces of this, in terms of frequent hybridization events, in its genome. In conclusion, the two entities, although distinguishable, appear to have a complex hybridization pattern which would make it preferable, as KadEREIT (1986) suggests, to treat them as infraspecific units.

Literature cited

Aceto S., Caputo P., Cozzolino S., Gaudio L. \& Moretti A. 1999. Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity. Molecular Phylogenetic and Evolution, 13: 67-76.
Anzalone B. \& Caputo G. 1974-75. Flora e vegetazione delle Isole Ponziane (Golfo di Gaeta). Delpinoa, n.s., 16-17: 3-184.
Bertoloni A. 1842. Flora italica, 5. Haeredum Richardi Masii, Bologna.
Caputo P., Stevenson D. W. \& Wurtzel E. T. 1991. A Phylogenetic analysis of American Zamiaceae (Cycadales) using chloroplast DNA restriction fragment length polymorphisms. Brittonia, 43: 135-145.
Fedde F. 1909. Papaveraceae. In: A. Engler (Ed.), Das Pflanzenreich, 4: 364-366. Leipzig.
Ferro G. \& Furnari F. 1968. Flora e vegetazione di Vulcano (Isole Eolie). Pubbl. Ist. Bot. Univ. Catania. 66 pp.
Greuter W., Burdet H. M. \& Long G. (eds.) 1989. Med-Checklist. 4. Conservatoire et Jardin Botanique de la Ville de Genève, Genève.
Gussone G. 1854. Enumeratio plantarum vascularium in insula Inarime. Vanni, Napoli.
Kadereit J. W. 1986. A revision of Papaver L. sect. Papaver (Papaveraceae). Bot. Jahrb. Syst., 108: 1-16.
La Valva V., Sabato S. \& Siniscalco Gigliano G. 1985. Morphology and alkaloid chemistry of Papaver setigerum DC. (Papaveraceae). Taxon, 34 (2): 191-196.
Mowat A. B. \& Walters S. M. 1964. Papaver. In: T.G. Tutin, Heywood V. H., Burgos N. A., Valentine D. H., Walters S. M. \& Webb D. A. 1995. Flora europaea, 1. Cambridge University Press, Cambridge.
Pignatti S. 1982. Flora d'Italia, 1. Edagricole, Bologna.
Thompson J. D., Higgins D. G. \& Gibson T. J. 1994. CLUSTAL W:
> improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res., 22: 4673-4680.

Abstract

A study on the molecular variation of Papaver somniferum L. and P. setigerum DC. has been undertaken. The sequences of the Internal Transcribed Spacers (ITS 1 and 2) of the nuclear ribosomal DNA are very similar in the two entities. The cultivated strains of P. somniferum are very homogeneous; the wild specimens of P. somniferum and P. setigerum have a more variable sequence. A phenetic analysis has shown that the specimens of P. setigerum are clearly separated in terms of sequence from P. somniferum. However, the wild accession of P. somniferum used in the study, although much closer in terms of sequence to the cultivated strains of the same taxon, groups at the base of the P. setigerum cluster. An investigation of the various paralogous sites present in the sequences, however, has confirmed on a molecular standpoint that the two entities hybridize, and that traces of hybridization in the genomes are more frequent where the two taxa live in sympatry.

